The prevalence of Plesiomonas shigelloides among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

By Wakas Saadi Mahmoud, Tikrit university/College of Science, Department of Biology

ABSTRACT

Background: Plesiomonas shigelloides a new member of the Enterobacteriaceae family is regards an emerging enteric pathogen, it is a water and soil organism and has been isolated from fresh water fish and many animals, and most isolates from humans have from stool cultures of patients with diarrhea. Little is known about the prevalence of plesiomonas shigelloides infections in Salah Al-din city. Furthermore this study design identification scheme for clinical laboratory to identify plesiomonas shigelloides.

Study design and objectives: This study was performed to determine the prevalence of plesiomonas shigelloides in hospitalized (nosocomial) patients and out clinic patients that infected with diarrhea in Tikrit Teaching Hospital, and out clinic centers during the period from May 2012 to the end April 2013.

Also this study was performed the role of aquariums that spread in Salah Al-din city as a source of plesiomonas shigelloides diarrheal infection, by collecting water samples from these aquariums monthly in the same period of diarrheal cases collection.

Patients and water sampling: One hundred and ten diarrhea samples were collected, 24 samples from Tikrit Teaching Hospital as a nosocomial diarrheal infection and 86 samples were collected from out clinic centers in Tikrit and other cities. Also water samples were collected from 29 aquariums that diffuse in Salah Al-din cities as monthly.

Identification method: This study used simple and short identification scheme for clinical laboratory diagnosis, by culturing the samples in blood agar as a first culture and S.S agar as a selective culture, and used Grams stain, Hanging drop test, Oxidase test, Stirring test, and Inositol fermentation test as a microscopic and biochemical identification tests.

Results: generally plesiomonas shigelloides diarrheal infection revealed the prevalence of this bacteria of the total examined stool samples, from 110 diarrheal cases 44(40%) cases with P. shigelloides and 66(60%) cases with other bacteria, 7(29%) nosocomial diarrheal infection, were regarded with P. shigelloides infection, and 57(43%) from out clinic diarrheal infection, were infected with P. shigelloides, these positive results were identified in the end of spring and summer months more than other seasons. Also from 29 aquarium water samples were collected monthly from each aquarium, showed variant results from month to another, but most of the aquarium water samples were positive in spring and summer months. The patient’s results showed that the adults were the most infected with P. shigelloides than children or infants. Investigation of antibiotic susceptibility was done for all plesiomonas shigelloides isolates, the nosocomial diarrheal samples showed multidrug resistance to antibiotics than the out clinic and aquarium samples. Some of the virulence factors were determined in this bacterium, like it is ability to produce some enzymes (DNase, lipase and lecithenase, urease, gelatinase) and to produce hemolysin toxin, the virulence factored results showed that the all isolates were produce lipase and hemolysin only.
The prevalence of *Plesiomonas shigelloides* among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

Key words: *P. shigelloides*, hospitalized diarrheal infection, aquarium, diarrheal infection.

Introduction

The plesiomonads are Gram-negative; non-sporeforming straight rods bacterium (0.8 to 1µm). They are also facultative anaerobes, being catalase and oxidase positive. Carbohydrate is broken down with the production of acid only. The plesiomonads are motile and have several polar flagella. The optimum temperature for growth is 30–37 °C, although plesiomonads will grow at a range of temperatures between 8 and 44 °C. The pH range for growth is 5–7.7 and growth is inhibited by 6% salt broth.

These organisms were initially described by Ferguson and Henderson in 1947 and were known as C27. The C27 organisms were initially placed in the genus *Pseudomonas* as *"Pseudomonasshielloides"*. They were subsequently transferred to the genus *Aeromonas* as *"A. shigelloides"*. Habs and Shubert proposed the name *Plesiomonas* in 1962 and the organisms were given their own genus. The name for this genus was chosen from the Greek word for ‘neighbor’ as it was thought that the organism was closely related to *Aeromonas*. However, *Plesiomonas* spp. have been found to be more closely related to the genus *Proteus* in the family Enterobacteriaceae. *Plesiomonas shigelloides* is the only species in the genus. This species name was chosen, as a minority of strains share a common O-antigen with *Shigellasonnei*. Despite this, the genus *Plesiomonas* still resides in the family *Vibrionaceae*.

The primary reservoir for this bacterium is aquatic environment. *P. shigelloides* has been isolated from both freshwater (rivers, creeks, lakes, etc.) and from seawater. Most of the reports on isolation of *P. shigelloides* are from countries in tropical or subtropical areas. The high incidence of this bacterium in Japan, Thailand, and more recently, China has given the acronym “Asian” to this microorganism. However, studies in Africa, among others, show that *P. shigelloides* is globally distributed. *P. shigelloides* has been implicated as an agent of human gastroenteritis for more than a half century, and there are increasing numbers of reports describing infections caused by this microorganism. The most important vehicle for transmission of *P. shigelloides* to humans appears to be seafood. Transmission through contaminated vegetables was described. The route of entry into the human gastrointestinal tract is through the ingestion of contaminated food or water. Most isolates from humans have come from stool cultures of patients with diarrhea. Symptoms associated with gastroenteritis caused by *P. shigelloides* include diarrhea, vomiting, abdominal pain, and nausea, although chills, headache, and fever may also occur.

Several virulence factors have been studied and described in the literature. They include enterotoxins, adhesions, invasions, enzymes, and other products such as astetrodotoxin and histamine that may be implicated in seafood poisoning. The role and contribution of these factors to the overall pathogenic potential of this microorganism are not fully elucidated yet. Most clinical diagnostic laboratories concentrate on recovery of classic enteric bacterial agents of gastroenteritis, such as *Salmonella*, *Shigella*, *Escherichia coli*, and *P. shigelloides* may thus be overlooked in a routine examination of stool samples.

P. shigelloides strains are usually susceptible to second- and...
The prevalence of *Plesiomonas shigelloides* among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

Third generation cephalosporins, nalidixic acid, quinolones, co-trimoxazole, chloramphenicol and nitrofurantoin. Resistance to aminoglycosides is variable. Most *P. shigelloides* strains produce β-lactamase and are therefore resistant to all penicillins; however, these isolates are susceptible to penicillins in combination with β-lactamase inhibitors.

Materials and Methods

This study was conducted in the period from May 2012 to the end of April 2013 in Salah Al-din city. One hundred and ten stool samples were collected from patients with diarrhea from Tikrit Teaching Hospital and out clinic centers, and twenty nine water samples were collected from twenty nine water aquariums monthly from May 2012 to April 2013, that diffused in Salah-Al-din cities.

The samples of study were collected according to standard microbiology laboratory techniques. Stool collection was achieved via sterile plastic containers provided with screw caps. The samples were processed within two hours of collection. Stools were processed and analyzed for enteric bacteria on the day of sample collection. Standard culture and identification methods were used to identify *P. shigelloides* in the second day by using short laboratory identification scheme as shown in figure 1, you can used this scheme when identifying bacteria that encountered in clinical laboratories. Samples were cultured on Blood agar and Salmonella Shigella agar. Cultured plates were incubated overnight at 35°C. After incubation the bacterial isolates were identified according to its morphological, and biochemical characteristics as recommended by 23, 37, 13.

Numbers of antibiotics for sensitivity test were determined by Kirby Bauer disk diffusion method, and some of virulence factors were investigated for all *P. shigelloides* isolates as recommended by 19-20.

For aquarium water samples, the Plate Count Techniques were useful for enumerating the naturally occurring bacteria that exist in a particular environment 21. This method detects spatial and seasonal variations in microbial populations and can serve as a useful source of isolates for further study.

Results and Discussion

Isolation and Identification:

One hundred and ten diarrhea samples were collected, 24(22%) samples from Tikrit Teaching Hospital as a nosocomial diarrheal infection and 86(78%) samples were collected from out clinic centers in Salah-Al-din cities. *Plesiomonas shigelloides* were detected in 44(40%) cases and 66(60%) cases were negative for *P. shigelloides*, as shown in figure (2).

Also, the seasonal variation of positive *P. shigelloides* cases showed that these cases were detected in May and June more than other months for nosocomial diarrheal infection and the out-clinic cases, as shown in figures (4, 5).

Plesiomonas shigelloides has been isolated from stool samples of patients with diarrhea 24. The present cross sectional study focused on the role and prevalence of these bacteria first as a cause of nosocomial diarrheal infections and second as out clinic diarrheal infections. No clear results mentioned the role of *P. shigelloides* in nosocomial diarrheal infection but 22, 30

The prevalence of *Plesiomonas shigelloides* among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

Mentioned that these bacteria can cause nosocomial diarrheal infections in hospitalized patients with weak immune system.

Also many reasons leads to nosocomial diarrheal infection, the hands of health care workers provide the major source of transmission of pathogens from patient to patient 25. Also oral ingestions seems to be the major route of introduction of nosocomial pathogens into the intestinal tract 26, and we know that most cases of *P. shigelloides* diarrheal infections result from eating foods contaminated with large number of these bacteria 22.

Once over growth of nosocomial pathogens has been established in the colon, fecal contamination results in spread to the environment and patient’s skin, the density of colonization by pathogens may have important implications for transmission to digestive system 27.

For the more, the inhibiting of colonization resistance and overgrowth of potential pathogens by antibiotics treatments that are excreted into intestinal tract is the most important factor that may disturb colonization resistance of patients 28. Finally contamination may be related to variety of factors that result in reduced standards of hygiene among hospitalized patients (e.g. sever illness, alteration of mental status, and debilitation) 29.

For out-clinic patients current results are more than mentioned by many researchers 19, 20and 31, they isolated *P. shigelloides* from ambulatory patients in 16.5%, 3.3% and 1.3% respectively. Infections caused by *P. shigelloides* occur more commonly among low-income groups in poorer areas 32. Also several factors can contribute to *P. shigelloides* diarrheal infection, the duration of maternal breastfeeding, food and environmental contaminations, maternal education and employment, home location, family income, access to treated water and basic sanitary conditions, seasonal variations and hosts underlying conditions 33, 34. Furthermore *P. shigelloides* isolated from a wide range of different animals, such as freshwater fish, goats, swine, cats, dogs, and also from fresh vegetables, that may play an important role in *P. shigelloides* diarrheal infections 1.

Our study was carried out on the end of spring and summer, the most diarrheic season in Iraq, and because Iraq is one of the subtropical climate countries where the *P. shigelloides* may present year around 7.

Twenty nine aquariums were selected for this study, to detect the prevalence of *P. shigelloides* in water samples that collected from these aquariums that diffused in Salah-Al-din city. The water samples were collected monthly from each aquarium. Plate count technique was doing for each water sample. As shown in figure (6) almost aquarium samples were positive for *P. shigelloides* in the end of spring months and summer months than for autumn and winter months.

The second targets of our study prove the role of aquariums that diffused in Salah Al-din cities in *P. shigelloides* diarrheal infection. We notice the positive results in water samples from these aquariums especially in summer months, which are similar with the patient’s results, as seen with previous figures. Also, most people who ate fishes taken from this aquarium in restaurants, especially in the spring and summer months were suffering from diarrhea that may be due to *P. shigelloides* infection. *Plesiomonas shigelloides* is found in aquatic environments primarily freshwater and estuaries within tropical and temperate climates in summer months 22.

Age distribution:

As shown in table (1) the most age that infected by *P. shigelloides* was adults.
The prevalence of *Plesiomonas shigelloides* among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

than children, and no positive cases with infant. These results confirmed by 13, he mentioned that most cases of *P. shigelloides* diarrheal infection were adults.

Numbers of virulence factors were investigated for all *P. shigelloides* isolates as shown in table (2). All isolates were produced hemolysin toxin, and lipase, whereas all isolates do not produced gelatinase, DNase, lecithenase, and urease.

These results were in agreement or closed to those reported by other study 35 they determined the ability of *P. shigelloides* to produce hemolysin toxin, and lipase. Hemolysin toxin can utilize the iron found in hemoglobin. Whereas the results of urease and gelatinase production were agreements with 19, 20, 38 and 39, they referred that *P. shigelloides* isolates cannot produce Urease, lecithenase, Gelatinase, and DNase. *P. shigelloides* appears to possess a much lower virulence potential with low symptomatic carriage rate among humans 13.

The standard disk diffusion method was used to determine the sensitivity of *P. shigelloides* isolates to several antibiotics, as shown in Table (3). This table showed that all isolates were resistance to Amikacin, Ampicillin, Carbenicillin, Cefotaxime, Gentamicin, Rifampicin and Streptomycin. Whereas, sensitive for Chloramphenicol, Ciprofloxacin, Trimethoprim, and Nalidixic acid. For Azithromycin, tetracycline, and amoxicillin-clavulanic acid the nosocomial and ambulatory isolates were resistance, whereas sensitive for aquarium isolates.

These results were close to those reported by other studies, which found that most strains of these bacteria were multiresistant 20. This result showed that the clinical isolates were multiresistant to antibiotics more than the aquarium isolates, and this result is in agreement with 20. Antimicrobial resistance in enteric pathogens is of great importance in developing world, were the rate of diarrheal diseases is highest 31. Studies have shown a general resistance to the penicillin class of antibiotics, but trimethoprim are active.

There are reports of resistance to more than one aminoglycoside (e.g. gentamicin, and amikacin) 13, 36. Hospitalized patients carrying these resistant isolates may continue to carry them over prolonged periods, and continued carriage of such isolates might contribute to their propagation both within and outside of hospital environment 30. *Plesiomonas shigelloides* are usually susceptible to nalidixic acid, quinolones, chloramphenicol, and trimethoprim, whereas resistance to streptomycin, and rifampicin 18. Treatment of *P. shigelloides* associated infection should be guided by sensitivity testing of the isolate. Quinolones may be used to treat *P. shigelloides* associated gastroenteritis and in some cases antibiotic treatment has been shown to decrease the duration of diarrheal illness 18.

Conclusions

The results of this study emphasize the importance of *P. shigelloides* bacteria in causing infectious diarrhea in hospital or outpatient clinics. Hence, it is advisable to be diagnosed routinely in all public and private hospital labs when other more common causes were excluded. Malnutrition factor has shown to be main independent risk factor for developing infection.

Acknowledgment: I acknowledge the support and assistance of Dr. Sinan Bahjat Alrifai, and all the doctors, nurses, and laboratory staff of Tikrit Teaching Hospital, and out-clinic centers,
The prevalence of *Plesiomonas shigelloides* among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

also for the aquarium farmers, for their assistance and cooperation.

References

The prevalence of *Plesiomonas* *shigelloides* among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

31. Al-Jarousha, AM, El-Jarou, MA, and El-Qouqa, IA. Bacterial Enteropathogens and risk factors

Tikrit Medical Journal 2016;21(1):285-295

TABLES

Table (1) Age distribution for \textit{P. shigelloides} diarrheal infection.

<table>
<thead>
<tr>
<th>Age</th>
<th>Nosocomial cases</th>
<th>Out-clinic cases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>Infant (< 1 yr)</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Children (1-14 yr)</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Adult (> 15 yr)</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>7</td>
<td>17</td>
</tr>
</tbody>
</table>

Table (2): Virulence factors for \textit{P. shigelloides} isolates.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Hemolysin</th>
<th>Lipase</th>
<th>Lecithenase</th>
<th>Urease</th>
<th>Gelatinase</th>
<th>DNase</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{P. shigelloides} isolates</td>
<td>(\beta)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The prevalence of *Plesiomonas shigelloides* among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

Table (3): Antibacterial resistance of *P. shigelloides* isolates.

<table>
<thead>
<tr>
<th>Isolate</th>
<th>AK</th>
<th>AMP</th>
<th>PY</th>
<th>CTX</th>
<th>C</th>
<th>CF</th>
<th>GM</th>
<th>TR</th>
<th>TE</th>
<th>NA</th>
<th>RiF</th>
<th>AZM</th>
<th>AMV</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1-N7</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>C1-C37</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>W1-W28</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
</tr>
</tbody>
</table>

Figure (1) Laboratory identification scheme for *P. shigelloides*.

Figure (2): The prevalence of *P. shigelloides* among current diarrhea cases.

For nosocomial cases, 7(29%) were *P.shigelloides* and for out-clinic cases, 37(43%) were *P.shigelloides* as shown in figure (3).
The prevalence of *Plesiomonas shigelloides* among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

Figure (3): The distribution of positive and negative cases among both out-clinic and nosocomial cases.

<table>
<thead>
<tr>
<th></th>
<th>Out-clinic cases</th>
<th>Nosocomial cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>with Plesiomonas infection</td>
<td>49 (57%)</td>
<td>37 (43%)</td>
</tr>
<tr>
<td>without Plesiomonas infection</td>
<td>17 (71%)</td>
<td>7 (29%)</td>
</tr>
</tbody>
</table>

Figure (4): The distribution according to seasonal variation for positive nosocomial cases.
The prevalence of *Plesiomonas shigelloides* among hospitalized and out-clinic diarrheal patients and the role of the aquarium as a source of infection

Figure (5): The distribution according to seasonal variation for positive out-clinic cases.

Figure (6): the distribution of positive aquarium samples according to seasons.